Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1197120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250020

RESUMO

Cell entry of most alphaherpesviruses is mediated by the binding of glycoprotein D (gD) to different cell surface receptors. Equine herpesvirus type 1 (EHV-1) and EHV-4 gDs interact with equine major histocompatibility complex I (MHC-I) to initiate entry into equine cells. We have characterized the gD-MHC-I interaction by solving the crystal structures of EHV-1 and EHV-4 gDs (gD1, gD4), performing protein-protein docking simulations, surface plasmon resonance (SPR) analysis, and biological assays. The structures of gD1 and gD4 revealed the existence of a common V-set immunoglobulin-like (IgV-like) core comparable to those of other gD homologs. Molecular modeling yielded plausible binding hypotheses and identified key residues (F213 and D261) that are important for virus binding. Altering the key residues resulted in impaired virus growth in cells, which highlights the important role of these residues in the gD-MHC-I interaction. Taken together, our results add to our understanding of the initial herpesvirus-cell interactions and will contribute to the targeted design of antiviral drugs and vaccine development.

2.
Mol Microbiol ; 119(2): 191-207, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349475

RESUMO

Streptococcus pneumoniae has to cope with the strong oxidant hypochlorous acid (HOCl), during host-pathogen interactions. Thus, we analyzed the global gene expression profile of S. pneumoniae D39 towards HOCl stress. In the RNA-seq transcriptome, the NmlR, SifR, CtsR, HrcA, SczA and CopY regulons and the etrx1-ccdA1-msrAB2 operon were most strongly induced under HOCl stress, which participate in the oxidative, electrophile and metal stress response in S. pneumoniae. The MerR-family regulator NmlR harbors a conserved Cys52 and controls the alcohol dehydrogenase-encoding adhC gene under carbonyl and NO stress. We demonstrated that NmlR senses also HOCl stress to activate transcription of the nmlR-adhC operon. HOCl-induced transcription of adhC required Cys52 of NmlR in vivo. Using mass spectrometry, NmlR was shown to be oxidized to intersubunit disulfides or S-glutathionylated under oxidative stress in vitro. A broccoli-FLAP-based assay further showed that both NmlR disulfides significantly increased transcription initiation at the nmlR promoter by RNAP in vitro, which depends on Cys52. Phenotype analyses revealed that NmlR functions in the defense against oxidative stress and promotes survival of S. pneumoniae during macrophage infections. In conclusion, NmlR was characterized as HOCl-sensing transcriptional regulator, which activates transcription of adhC under oxidative stress by thiol switches in S. pneumoniae.


Assuntos
Estresse Oxidativo , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Regiões Promotoras Genéticas , Transcriptoma , Regulon , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
3.
Antioxid Redox Signal ; 38(13-15): 877-895, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36242097

RESUMO

Aims: The MarR/DUF24-family QsrR and YodB repressors control quinone detoxification pathways in Staphylococcus aureus and Bacillus subtilis. In S. aureus, the QsrR regulon also confers resistance to antimicrobial compounds with quinone-like elements, such as rifampicin, ciprofloxacin, and pyocyanin. Although QsrR was shown to be inhibited by thiol-S-alkylation of its conserved Cys4 residue by 1,4-benzoquinone, YodB senses quinones and diamide by the formation of reversible intermolecular disulfides. In this study, we aimed at further investigating the redox-regulation of QsrR and the role of its Cys4, Cys29, and Cys32 residues under quinone and oxidative stress in S. aureus. Results: The QsrR regulon was strongly induced by quinones and oxidants, such as diamide, allicin, hypochlorous acid (HOCl), and AGXX® in S. aureus. Transcriptional induction of catE2 by quinones and oxidants required Cys4 and either Cys29' or Cys32' of QsrR for redox sensing in vivo. DNA-binding assays revealed that QsrR is reversibly inactivated by quinones and oxidants, depending on Cys4. Using mass spectrometry, QsrR was shown to sense diamide by an intermolecular thiol-disulfide switch, involving Cys4 and Cys29' of opposing subunits in vitro. In contrast, allicin caused S-thioallylation of all three Cys residues in QsrR, leading to its dissociation from the operator sequence. Further, the QsrR regulon confers resistance against quinones and oxidants, depending on Cys4 and either Cys29' or Cys32'. Conclusion and Innovation: QsrR was characterized as a two-Cys-type redox-sensing regulator, which senses the oxidative mode of quinones and strong oxidants, such as diamide, HOCl, and the antimicrobial compound allicin via different thiol switch mechanisms.


Assuntos
Quinonas , Compostos de Sulfidrila , Compostos de Sulfidrila/metabolismo , Staphylococcus aureus/metabolismo , Oxidantes/farmacologia , Oxidantes/metabolismo , Diamida/farmacologia , Oxirredução , Ácido Hipocloroso/metabolismo , Proteínas de Bactérias/metabolismo
4.
Toxins (Basel) ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35878187

RESUMO

Type I ribosome-inactivating proteins (RIPs) are plant toxins that inhibit protein synthesis by exerting rRNA N-glycosylase activity (EC 3.2.2.22). Due to the lack of a cell-binding domain, type I RIPs are not target cell-specific. However once linked to antibodies, so called immunotoxins, they are promising candidates for targeted anti-cancer therapy. In this study, sapovaccarin-S1 and -S2, two newly identified type I RIP isoforms differing in only one amino acid, were isolated from the seeds of Saponaria vaccaria L. Sapovaccarin-S1 and -S2 were purified using ammonium sulfate precipitation and subsequent cation exchange chromatography. The determined molecular masses of 28,763 Da and 28,793 Da are in the mass range typical for type I RIPs and the identified amino acid sequences are homologous to known type I RIPs such as dianthin 30 and saporin-S6 (79% sequence identity each). Sapovaccarin-S1 and -S2 showed adenine-releasing activity and induced cell death in Huh-7 cells. In comparison to other type I RIPs, sapovaccarin-S1 and -S2 exhibited a higher thermostability as shown by nano-differential scanning calorimetry. These results suggest that sapovaccarin-S1 and -S2 would be optimal candidates for targeted anti-cancer therapy.


Assuntos
Saponaria , Vaccaria , N-Glicosil Hidrolases/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Isoformas de Proteínas , Proteínas Inativadoras de Ribossomos/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/química , Ribossomos/metabolismo , Saponaria/química , Saponaria/metabolismo , Sementes/química
5.
BMC Ecol Evol ; 22(1): 67, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585501

RESUMO

BACKGROUND: Host-pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. RESULTS: We find that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches significantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited effect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on different diets, regardless of infection status. CONCLUSIONS: We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide significant immune protection in B. orientalis, suggesting that the host's dietary shift might also result from random rather than directed behaviour. The lack of an apparent benefit of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted.


Assuntos
Anorexia , Baratas , Alérgenos , Animais , Dieta , Comportamento Alimentar/fisiologia , Nutrientes
6.
PLoS One ; 17(4): e0266937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35417490

RESUMO

Species-specific diversities are particular features of mammalian chloride channel regulator, calcium activated (CLCA) genes. In contrast to four complex gene clusters in mammals, only two CLCA genes appear to exist in chickens. CLCA2 is conserved in both, while only the galline CLCA1 (gCLCA1) displays close genetic distance to mammalian clusters 1, 3 and 4. In this study, sequence analyses and biochemical characterizations revealed that gCLCA1 as a putative avian prototype shares common protein domains and processing features with all mammalian CLCA homologues. It has a transmembrane (TM) domain in the carboxy terminal region and its mRNA and protein were detected in the alimentary canal, where the protein was localized in the apical membrane of enterocytes, similar to CLCA4. Both mammals and birds seem to have at least one TM domain containing CLCA protein with complex glycosylation in the apical membrane of enterocytes. However, some characteristic features of mammalian CLCA1 and 3 including entire protein secretion and expression in cell types other than enterocytes seem to be dispensable for chicken. Phylogenetic analyses including twelve bird species revealed that avian CLCA1 and mammalian CLCA3 form clades separate from a major branch containing mammalian CLCA1 and 4. Overall, our data suggest that gCLCA1 and mammalian CLCA clusters 1, 3 and 4 stem from a common ancestor which underwent complex gene diversification in mammals but not in birds.


Assuntos
Galinhas , Canais de Cloreto , Animais , Membrana Celular/metabolismo , Galinhas/genética , Galinhas/metabolismo , Canais de Cloreto/metabolismo , Enterócitos/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Filogenia , Domínios Proteicos
7.
Curr Biol ; 32(4): 919-926.e6, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35051355

RESUMO

Cytoskeletal proteins are essential for parasite proliferation, growth, and transmission, and therefore have the potential to serve as drug targets.1-5 While microtubules and their molecular building block αß-tubulin are established drug targets in a variety of cancers,6,7 we still lack sufficient knowledge of the biochemistry of parasite tubulins to exploit the structural divergence between parasite and human tubulins. For example, it remains to be determined whether compounds of interest can specifically target parasite microtubules without affecting the host cell cytoskeleton. Such mechanistic insights have been limited by the lack of functional parasite tubulin. In this study, we report the purification and characterization of tubulin from Plasmodium falciparum, the causative agent of malaria. We show that the highly purified tubulin is fully functional, as it efficiently assembles into microtubules with specific parameters of dynamic instability. There is a high degree of amino-acid conservation between human and P. falciparum α- and ß-tubulin, sharing approximately 83.7% and 88.5% identity, respectively. However, Plasmodium tubulin is more similar to plant than to mammalian tubulin, raising the possibility of identifying compounds that would selectively disrupt parasite microtubules without affecting the host cell cytoskeleton. As a proof of principle, we describe two compounds that exhibit selective toxicity toward parasite tubulin. Thus, the ability to specifically disrupt protozoan microtubule growth without affecting human microtubules provides an exciting opportunity for the development of novel antimalarials.


Assuntos
Malária Falciparum , Parasitos , Animais , Humanos , Mamíferos , Microtúbulos/metabolismo , Parasitos/metabolismo , Plasmodium falciparum , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
8.
Plant Cell Environ ; 45(4): 1033-1048, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34713898

RESUMO

Known elicitors of plant defenses against eggs of herbivorous insects are low-molecular-weight organic compounds associated with the eggs. However, previous studies provided evidence that also proteinaceous compounds present in secretion associated with eggs of the herbivorous sawfly Diprion pini can elicit defensive responses in  Pinus sylvestris. Pine responses induced by the proteinaceous secretion are known to result in enhanced emission of (E)-ß-farnesene, which attracts egg parasitoids killing the eggs. Here, we aimed to identify the defense-eliciting protein and elucidate its function. After isolating the defense-eliciting protein from D. pini egg-associated secretion by ultrafiltration and gel electrophoresis, we identified it by MALDI-TOF mass spectrometry as an annexin-like protein, which we named 'diprionin'. Further GC-MS analyses showed that pine needles treated with heterologously expressed diprionin released enhanced quantities of (E)-ß-farnesene. Our bioassays confirmed attractiveness of diprionin-treated pine to egg parasitoids. Expression of several pine candidate genes involved in terpene biosynthesis and regulation of ROS homeostasis was similarly affected by diprionin and natural sawfly egg deposition. However, the two treatments had different effects on expression of pathogenesis-related genes (PR1, PR5). Diprionin is the first egg-associated proteinaceous elicitor of indirect plant defense against insect eggs described so far.


Assuntos
Himenópteros , Pinus , Animais , Anexinas/metabolismo , Herbivoria , Himenópteros/fisiologia , Oviposição , Pinus/metabolismo
9.
ACS Omega ; 6(43): 28903-28911, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34746582

RESUMO

During DNA replication, primases synthesize oligonucleotide primers on single-stranded template DNA, which are then extended by DNA polymerases to synthesize a complementary DNA strand. Primase RepB' of plasmid RSF1010 initiates DNA replication on two 40 nucleotide-long inverted repeats, termed ssiA and ssiB, within the oriV of RSF1010. RepB' consists of a catalytic domain and a helix bundle domain, which are connected by long α-helix 6 and an unstructured linker. Previous work has demonstrated that RepB' requires both domains for the initiation of dsDNA synthesis in DNA replication assays. However, the precise functions of these two domains in primer synthesis have been unknown. Here, we report that both domains of RepB' are required to synthesize a 10-12 nucleotide-long DNA primer, whereas the isolated domains are inactive. Mutational analysis of the catalytic domain indicates that the solvent-exposed W50 plays a critical role in resolving hairpin structures formed by ssiA and ssiB. Three structurally conserved aspartates (D77, D78, and D134) of RepB' catalyze the nucleotidyl transfer reaction. Mutations on the helix bundle domain are identified that either reduce the primer length to a dinucleotide (R285A) or abolish the primer synthesis (D238A), indicating that the helix bundle domain is required to form and extend the initial dinucleotide synthesized by the catalytic domain.

10.
Free Radic Biol Med ; 177: 120-131, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678418

RESUMO

Staphylococcus aureus has to cope with oxidative and electrophile stress during host-pathogen interactions. The TetR-family repressor GbaA was shown to sense electrophiles, such as N-ethylmaleimide (NEM) via monothiol mechanisms of the two conserved Cys55 or Cys104 residues in vitro. In this study, we further investigated the regulation and function of the GbaA repressor and its Cys residues in S. aureus COL. The GbaA-controlled gbaAB-SACOL2595-97 and SACOL2592-nmrA-2590 operons were shown to respond only weakly 3-10-fold to oxidants, electrophiles or antibiotics in S. aureus COL, but are 57-734-fold derepressed in the gbaA deletion mutant, indicating that the physiological inducer is still unknown. Moreover, the gbaA mutant remained responsive to disulfide and electrophile stress, pointing to additional redox control mechanisms of both operons. Thiol-stress induction of the GbaA regulon was strongly diminished in both single Cys mutants, supporting that both Cys residues are required for redox-sensing in vivo. While GbaA and the single Cys mutants are reversible oxidized under diamide and allicin stress, these thiol switches did not affect the DNA binding activity. The repressor activity of GbaA could be only partially inhibited with NEM in vitro. Survival assays revealed that the gbaA mutant confers resistance under diamide, allicin, NEM and methylglyoxal stress, which was mediated by the SACOL2592-90 operon encoding for a putative glyoxalase and oxidoreductase. Altogether, our results support that the GbaA repressor functions in the defense against oxidative and electrophile stress in S. aureus. GbaA represents a 2-Cys-type redox sensor, which requires another redox-sensing regulator and an unknown thiol-reactive ligand for full derepression of the GbaA regulon genes.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dissulfetos , Humanos , Oxirredução , Regulon , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
11.
Nat Commun ; 12(1): 4236, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244493

RESUMO

The repertoire of peptides presented by major histocompatibility complex class I (MHC-I) molecules on the cell surface is tailored by the ER-resident peptide loading complex (PLC), which contains the exchange catalyst tapasin. Tapasin stabilizes MHC-I molecules and promotes the formation of stable peptide-MHC-I (pMHC-I) complexes that serve as T cell antigens. Exchange of suboptimal by high-affinity ligands is catalyzed by tapasin, but the underlying mechanism is still elusive. Here we analyze the tapasin-induced changes in MHC-I dynamics, and find the catalyst to exploit two essential features of MHC-I. First, tapasin recognizes a conserved allosteric site underneath the α2-1-helix of MHC-I, 'loosening' the MHC-I F-pocket region that accomodates the C-terminus of the peptide. Second, the scoop loop11-20 of tapasin relies on residue L18 to target the MHC-I F-pocket, enabling peptide exchange. Meanwhile, tapasin residue K16 plays an accessory role in catalysis of MHC-I allotypes bearing an acidic F-pocket. Thus, our results provide an explanation for the observed allele-specificity of catalyzed peptide exchange.


Assuntos
Alelos , Apresentação de Antígeno/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Regulação Alostérica , Biocatálise , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/isolamento & purificação , Antígenos de Histocompatibilidade Classe I/ultraestrutura , Humanos , Imunoglobulinas/metabolismo , Imunoglobulinas/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Membrana Transportadoras/ultraestrutura , Simulação de Dinâmica Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em alfa-Hélice , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
12.
Protein Expr Purif ; 186: 105918, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34044133

RESUMO

Bone morphogenetic protein 2 (BMP21) is a highly interesting therapeutic growth factor due to its strong osteogenic/osteoinductive potential. However, its pronounced aggregation tendency renders recombinant and soluble production troublesome and complex. While prokaryotic expression systems can provide BMP2 in large amounts, the typically insoluble protein requires complex denaturation-renaturation procedures with medically hazardous reagents to obtain natively folded homodimeric BMP2. Based on a detailed aggregation analysis of wildtype BMP2, we designed a hydrophilic variant of BMP2 additionally containing an improved heparin binding site (BMP2-2Hep-7M). Consecutive optimization of BMP2-2Hep-7M expression and purification enabled production of soluble dimeric BMP2-2Hep-7M in high yield in E. coli. This was achieved by a) increasing protein hydrophilicity via introducing seven point mutations within aggregation hot spots of wildtype BMP2 and a longer N-terminus resulting in higher affinity for heparin, b) by employing E. coli strain SHuffle® T7, which enables the structurally essential disulfide-bond formation in BMP2 in the cytoplasm, c) by using BMP2 variant characteristic soluble expression conditions and application of l-arginine as solubility enhancer. The BMP2 variant BMP2-2Hep-7M shows strongly attenuated although not completely eliminated aggregation tendency.


Assuntos
Proteína Morfogenética Óssea 2 , Proteínas Recombinantes de Fusão , Sítios de Ligação/genética , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/isolamento & purificação , Proteína Morfogenética Óssea 2/metabolismo , Escherichia coli/genética , Heparina/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade
13.
Eur J Pharm Biopharm ; 164: 105-113, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33957224

RESUMO

Exenatide is a small therapeutic peptide being currently used in clinic for the treatment of diabetes mellitus type II, however, displaying a short blood circulation time which makes two daily injections necessary. Covalent polymer modification of a protein is a well-known approach to overcome this limitation, resulting in steric shielding, an increased size and therefore a longer circulation half-life. In this study, we employed site-selective C-terminal polymer ligation of exenatide via copper-catalyzed azide-alkyne-cycloaddition (CuAAC) to yield 1:1-conjugates of either poly(ethylene glycol) (PEG) or linear polyglycerol (LPG) of different molecular weights. Our goal was to compare the impact of the two polymers on size, structure and activity of exenatide on the in vitro and in vivo level. Both polymers did not alter the secondary structure of exenatide and expectedly increased its hydrodynamic size, where the LPG-versions of exenatide showed slightly smaller values than their PEG-analogs of same molecular weight. Upon conjugation, GLP-1 receptor activation was diminished, however, still enabled maximum receptor response at slightly higher concentrations. Exenatide modified with a 40 kDa LPG (Ex-40-LPG) showed significant reduction of the blood glucose level in diabetic mice for up to 72 h, which was comparable to its PEG-analog, but 9-fold longer than native exenatide (8 h).


Assuntos
Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Exenatida/administração & dosagem , Exenatida/química , Glicerol/química , Polietilenoglicóis/química , Polímeros/química , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Meia-Vida , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Masculino , Camundongos , Peptídeos/administração & dosagem , Peptídeos/química
14.
Biomacromolecules ; 22(4): 1406-1416, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33792290

RESUMO

Since several decades, PEGylation is known to be the clinical standard to enhance pharmacokinetics of biotherapeutics. In this study, we introduce polyglycerol (PG) of different lengths and architectures (linear and hyperbranched) as an alternative polymer platform to poly(ethylene glycol) (PEG) for half-life extension (HLE). We designed site-selective N-terminally modified PG-protein conjugates of the therapeutic protein anakinra (IL-1ra, Kineret) and compared them systematically with PEG analogues of similar molecular weights. Linear PG and PEG conjugates showed comparable hydrodynamic sizes and retained their secondary structure, whereas binding affinity to IL-1 receptor 1 decreased with increasing polymer length, yet remained in the low nanomolar range for all conjugates. The terminal half-life of a 40 kDa linear PG-modified anakinra was extended 4-fold compared to the unmodified protein, close to its PEG analogue. Our results demonstrate similar performances of PEG- and PG-anakinra conjugates and therefore highlight the outstanding potential of polyglycerol as a PEG alternative for half-life extension of biotherapeutics.


Assuntos
Expectativa de Vida , Polímeros , Glicerol , Meia-Vida , Polietilenoglicóis
15.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918442

RESUMO

While human extracellular vesicles (EVs) have attracted a big deal of interest and have been extensively characterized over the last years, plant-derived EVs and nanovesicles have earned less attention and have remained poorly investigated. Although a series of investigations already revealed promising beneficial health effects and drug delivery properties, adequate (pre)clinical studies are rare. This fact might be caused by a lack of sources with appropriate qualities. Our study introduces plant cell suspension culture as a new and well controllable source for plant EVs. Plant cells, cultured in vitro, release EVs into the growth medium which could be harvested for pharmaceutical applications. In this investigation we characterized EVs and nanovesicles from distinct sources. Our findings regarding secondary metabolites indicate that these might not be packaged into EVs in an active manner but enriched in the membrane when lipophilic enough, since apparently lipophilic compounds were associated with nanovesicles while more hydrophilic structures were not consistently found. In addition, protein identification revealed a possible explanation for the mechanism of EV cell wall passage in plants, since cell wall hydrolases like 1,3-ß-glucosidases, pectinesterases, polygalacturonases, ß-galactosidases and ß-xylosidase/α-L-arabinofuranosidase 2-like are present in plant EVs and nanovesicles which might facilitate cell wall transition. Further on, the identified proteins indicate that plant cells secrete EVs using similar mechanisms as animal cells to release exosomes and microvesicles.


Assuntos
Vesículas Extracelulares/ultraestrutura , Magnoliopsida/metabolismo , Metabolismo Secundário , Técnicas de Cultura de Células , Células Cultivadas , Craterostigma , Fosfolipídeos/metabolismo , Proteoma
16.
Front Immunol ; 11: 1686, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133056

RESUMO

Cationic antimicrobial peptides (AMPs) are active immune effectors of multicellular organisms and are also considered as new antimicrobial drug candidates. One of the problems encountered when developing AMPs as drugs is the difficulty of reaching sufficient killing concentrations under physiological conditions. Here, using pexiganan, a cationic peptide derived from a host defense peptide of the African clawed frog and the first AMP developed into an antibacterial drug, we studied whether sub-lethal effects of AMPs can be harnessed to devise treatment combinations. We studied the pexiganan stress response of Staphylococcus aureus at sub-lethal concentrations using quantitative proteomics. Several proteins involved in nucleotide metabolism were elevated, suggesting a metabolic demand. We then show that Staphylococcus aureus is highly susceptible to antimetabolite nucleoside analogs when exposed to pexiganan, even at sub-inhibitory concentrations. These findings could be used to enhance pexiganan potency while decreasing the risk of resistance emergence, and our findings can likely be extended to other antimicrobial peptides.


Assuntos
Antibacterianos/farmacologia , Antimetabólitos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Nucleosídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Quimioterapia Combinada , Fluoruracila/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Proteoma , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Tioguanina/farmacologia , Uracila/análogos & derivados , Uracila/farmacologia , Gencitabina
17.
Front Microbiol ; 11: 544785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042055

RESUMO

Polynucleobacter asymbioticus strain QLW-P1DMWA-1T represents a group of highly successful heterotrophic ultramicrobacteria that is frequently very abundant (up to 70% of total bacterioplankton) in freshwater habitats across all seven continents. This strain was originally isolated from a shallow Alpine pond characterized by rapid changes in water temperature and elevated UV radiation due to its location at an altitude of 1300 m. To elucidate the strain's adjustment to fluctuating environmental conditions, we recorded changes occurring in its transcriptomic and proteomic profiles under contrasting experimental conditions by simulating thermal conditions in winter and summer as well as high UV irradiation. To analyze the potential connection between gene expression and regulation via methyl group modification of the genome, we also analyzed its methylome. The methylation pattern differed between the three treatments, pointing to its potential role in differential gene expression. An adaptive process due to evolutionary pressure in the genus was deduced by calculating the ratios of non-synonymous to synonymous substitution rates for 20 Polynucleobacter spp. genomes obtained from geographically diverse isolates. The results indicate purifying selection.

18.
Sci Rep ; 10(1): 15377, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958800

RESUMO

Agrostemma githago L. (corn cockle) is an herbaceous plant mainly growing in Europe. The seeds of the corn cockle are toxic and poisonings were widespread in the past by consuming contaminated flour. The toxic principle of Agrostemma seeds was attributed to triterpenoid secondary metabolites. Indeed, this is in part true. However Agrostemma githago L. is also a producer of ribosome-inactivating proteins (RIPs). RIPs are N-glycosylases that inactivate the ribosomal RNA, a process leading to an irreversible inhibition of protein synthesis and subsequent cell death. A widely known RIP is ricin from Ricinus communis L., which was used as a bioweapon in the past. In this study we isolated agrostin, a 27 kDa RIP from the seeds of Agrostemma githago L., and determined its full sequence. The toxicity of native agrostin was investigated by impedance-based live cell imaging. By RNAseq we identified 7 additional RIPs (agrostins) in the transcriptome of the corn cockle. Agrostin was recombinantly expressed in E. coli and characterized by MALDI-TOF-MS and adenine releasing assay. This study provides for the first time a comprehensive analysis of ribosome-inactivating proteins in the corn cockle and complements the current knowledge about the toxic principles of the plant.


Assuntos
Agrostemma/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Escherichia coli/metabolismo , Europa (Continente) , Biossíntese de Proteínas/fisiologia , RNA Ribossômico/metabolismo , Sementes/metabolismo , Transcriptoma/fisiologia
19.
Biomedicines ; 8(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731454

RESUMO

Feae's viper Azemipos feae belongs to the Azemiopinae subfamily of the Viperidae family. The effects of Viperidae venoms are mostly coagulopathic with limited neurotoxicity manifested by phospholipases A2. From A. feae venom, we have earlier isolated azemiopsin, a novel neurotoxin inhibiting the nicotinic acetylcholine receptor. To characterize other A. feae toxins, we applied label-free quantitative proteomics, which revealed 120 unique proteins, the most abundant being serine proteinases and phospholipases A2. In total, toxins representing 14 families were identified, among which bradykinin-potentiating peptides with unique amino acid sequences possessed biological activity in vivo. The proteomic analysis revealed also basal (commonly known as non-conventional) three-finger toxins belonging to the group of those possessing neurotoxic activity. This is the first indication of the presence of three-finger neurotoxins in viper venom. In parallel, the transcriptomic analysis of venom gland performed by Illumina next-generation sequencing further revealed 206 putative venom transcripts. Together, the study unveiled the venom proteome and venom gland transciptome of A. feae, which in general resemble those of other snakes from the Viperidae family. However, new toxins not found earlier in viper venom and including three-finger toxins and unusual bradykinin-potentiating peptides were discovered.

20.
Biomolecules ; 10(6)2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486122

RESUMO

Brucellosis is a zoonotic infection caused by bacteria of the genus Brucella. The species, B. abortus and B. melitensis, major causative agents of human brucellosis, share remarkably similar genomes, but they differ in their natural hosts, phenotype, antigenic, immunogenic, proteomic and metabolomic properties. In the present study, label-free quantitative proteomic analysis was applied to investigate protein expression level differences. Type strains and field strains were each cultured six times, cells were harvested at a midlogarithmic growth phase and proteins were extracted. Following trypsin digestion, the peptides were desalted, separated by reverse-phase nanoLC, ionized using electrospray ionization and transferred into an linear trap quadrapole (LTQ) Orbitrap Velos mass spectrometer to record full scan MS spectra (m/z 300-1700) and tandem mass spectrometry (MS/MS) spectra of the 20 most intense ions. Database matching with the reference proteomes resulted in the identification of 826 proteins. The Cluster of Gene Ontologies of the identified proteins revealed differences in bimolecular transport and protein synthesis mechanisms between these two strains. Among several other proteins, antifreeze proteins, Omp10, superoxide dismutase and 30S ribosomal protein S14 were predicted as potential virulence factors among the proteins differentially expressed. All mass spectrometry data are available via ProteomeXchange with identifier PXD006348.


Assuntos
Proteínas de Bactérias/análise , Brucella abortus/química , Brucella melitensis/química , Proteômica , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...